10 Pasch Geometries

Definition (Pasch's Postulate (PP))

A metric geometry satisfies Pasch's Postulate (PP) if for any line ℓ, any triangle $\triangle A B C$, and any point $D \in \ell$ such that $A-D-B$, then either $\ell \cap \overline{A C} \neq \emptyset$ or $\ell \cap \overline{B C} \neq \emptyset$.

Theorem (Pasch's Theorem) If a metric geometry satisfies PSA then it also satisfies PP.

1. Prove the above theorem.

Definition (Pasch Geometry)

A Pasch Geometry is a metric geometry which satisfies PSA.
Theorem Let $\{\mathcal{S}, \mathcal{L}, d\}$ be a metric geometry which satisfies PP. If A, B, C are noncollinear and if the line ℓ does not contain any of the points A, B, C, then ℓ cannot intersect all three sides of $\triangle A B C$.
2. Prove the above theorem.

Theorem If a metric geometry satisfies PP then it also satisfies PSA.
3. Prove the above theorem.
4. (Peano's Axiom) Given a triangle $\triangle A B C$ in a metric geometry which satisfies PSA and points D, E with $B-C-D$ and $A-E-C$, prove there is a point $F \in \overleftrightarrow{D E}$ with $A-F-B$, and $D-E-F$.
5. Given $\triangle A B C$ in a metric geometry which satisfies PSA and points D, F with $B-C-D$, $A-F-B$, prove there exists $E \in \overleftrightarrow{D F}$ with $A-E-C$ and $D-E-F$.
6. Given $\triangle A B C$ and a point P in a metric geometry which satisfies PSA prove there is a line through P that contains exactly two points of $\triangle A B C$.

Definition (Missing Strip Plane)

The Missing Strip Plane is the abstract geometry $\{\mathcal{S}, \mathcal{L}\}$ given by
$\mathcal{S}=\left\{(x, y) \in \mathbb{R}^{2} \mid x<0\right.$ or $\left.1 \leq x\right\}$,
$\mathcal{L}=\{\ell \cap \mathcal{S} \mid \ell$ is a Cartesian line and $\ell \cap \mathcal{S} \neq \emptyset\}$.
7. Given the following pairs of points: (i) $(2,3)$ and $(3,-1)$; (ii) $(0,3)$ and $(1 / 2,-2)$; (iii) $(-1,4)$ and $(2,7)$. If the given pair of points lies in the point set of the Missing Strip Plane, find the line through that pair of points.
8. If lines ℓ_{1}, ℓ_{2} and ℓ_{3} in the Missing Strip plane satisfy:
ℓ_{1} is parallel to ℓ_{2} and
ℓ_{2} is parallel to ℓ_{3},
is it true that ℓ_{1} is parallel to ℓ_{3} ? Justify your answer.
9. Given that a metric geometry satisfies PSA if and only if it is a Pasch geometry, give an example to show that the Missing Strip Plane does not satisfy PSA.
10. Let \mathcal{S} denote the set of points of the Missing Strip plane. Find all lines in this plane through the point $(2,0)$ which are parallel in the Missing Strip plane to (i) the line $L_{-1} \cap \mathcal{S}$; (ii) the line $L_{1,2} \cap \mathcal{S}$.
11. Prove that the Missing Strip Plane is an incidence geometry.
Proposition If $\{\mathcal{S}, \mathcal{L}\}$ is the Missing Strip Plane and $\ell=L_{m, b}$ then $g_{\ell}: \ell \cap \mathcal{S} \rightarrow \mathbb{R}$ is a bijection (for definition of g_{ℓ} see lecture notes or in book on page 79).
12. Prove the above proposition.

Proposition The Missing Strip Plane is not a Pasch geometry.
13. Prove the above proposition.
14. Let \mathcal{S} denote the set of points of the Missing Strip plane. Find all lines in this plane through the point $(-1,1)$ which are parallel in the Missing Strip plane to (i) the line $L_{2} \cap \mathcal{S}$; (ii) the line $L_{-1,2} \cap \mathcal{S}$.
15. Given a triangle, $\triangle A B C$, in a metric geometry, and points D, E with $A-D-B$ and $C-E-B$, is it always the case that $\overleftrightarrow{A E} \cap \overleftrightarrow{C D} \neq \emptyset$?

11 Interiors and the Crossbar Theorem

Theorem In a Pasch geometry if \mathcal{A} is a non-empty convex set that does not intersect the line ℓ, then all points of \mathcal{A} lie on the same side of ℓ.

1. Prove the above theorem.

Definition (interior of the ray, interior of the segment)

The interior of the ray $\overrightarrow{A B}$ in a metric geometry is the set $\operatorname{int}(\overrightarrow{A B})=\overrightarrow{A B}-\{A\}$. The interior of the segment $\overline{A B}$ in a metric geometry is the set $\operatorname{int}(\overline{A B})=\overline{A B}-\{A, B\}$.
2. Prove that in a metric geometry, $\operatorname{int}(\overrightarrow{A B})$ and $\operatorname{int}(\overline{A B})$ are convex sets.

Theorem Let \mathcal{A} be a line, ray, segment, the interior of a ray, or the interior of a segment in a Pasch geometry. If ℓ is a line with $\mathcal{A} \cap \ell=\emptyset$ then all of \mathcal{A} lies on one side of ℓ. If there is a point B with $A-B-C$ and $\overleftrightarrow{A C} \cap \ell=\{B\}$ then $\operatorname{int}(\overrightarrow{B A})$ and $\operatorname{int}(\overline{B A})$ both lie on the same side of ℓ while
$\operatorname{int}(\overrightarrow{B A})$ and $\operatorname{int}(\overrightarrow{B C})$ lie on opposite sides of ℓ.
3. Prove the above theorem.

Theorem (Z Theorem) In a Pasch geometry, if P and Q are on opposite sides of the line $\overleftrightarrow{A B}$ then $\overrightarrow{B P} \cap \overrightarrow{A Q}=\emptyset$. In particular, $\overrightarrow{B P} \cap \overline{A Q}=\emptyset$.
4. Prove the above theorem.

Definition (interior of $\measuredangle A B C$)

In a Pasch geometry the interior of $\measuredangle A B C$, written $\operatorname{int}(\measuredangle A B C)$, is the intersection of the side of $\overleftrightarrow{A B}$ that contains C with the side of $\overleftrightarrow{B C}$ that contains A.

Theorem In a Pasch geometry, if
$\measuredangle A B C=\measuredangle A^{\prime} B^{\prime} C^{\prime}$ then $\operatorname{int}(\measuredangle A B C)=\operatorname{int}\left(\measuredangle A^{\prime} B^{\prime} C^{\prime}\right)$.
5. Prove the above theorem.

Theorem In a Pasch geometry, $P \in \operatorname{int}(\measuredangle A B C)$ if and only if A and P are on the same side of $\overleftrightarrow{B C}$ and C and P are on the same side of $\overleftrightarrow{B A}$.
6. Prove the above theorem.

Theorem Given $\triangle A B C$ in a Pasch geometry, if $A-P-C$ then $P \in \operatorname{int}(\measuredangle A B C)$ and therefore $\operatorname{int}(\overline{A C}) \subseteq \operatorname{int}(\measuredangle A B C)$.
7. Prove the above theorem.
8. In a Pasch geometry, if $P \in \operatorname{int}(\measuredangle A B C)$ prove

$$
\operatorname{int}(\overrightarrow{B P}) \subseteq \operatorname{int}(\measuredangle A B C)
$$

Theorem (Crossbar Theorem) In a Pasch geometry if $P \in \operatorname{int}(\measuredangle A B C)$ then $\overrightarrow{B P}$ intersects $\overline{A C}$ at a unique point F with $A-F-C$.
9. Prove the above theorem.

Theorem In a Pasch geometry, if $\overline{C P} \cap \overleftrightarrow{A B}=\emptyset$ then $P \in \operatorname{int}(\angle A B C)$ if and only if A and C are on opposite sides of $\overleftrightarrow{B P}$.
10. Prove the above theorem.

Theorem In a Pasch geometry, if $A-B-D$ then $P \in \operatorname{int}(\measuredangle A B C)$ if and only if $C \in \operatorname{int}(\measuredangle D B P)$.
11. Prove the above theorem.

Definition (interior of $\triangle A B C$)

In a Pasch geometry, the interior of $\triangle A B C$, written $\operatorname{int}(\triangle A B C)$, is the intersection of the side of $\overleftrightarrow{A B}$ which contains C, the side of $\overleftrightarrow{B C}$ which contains A, and the side of $\overleftrightarrow{C A}$ which contains B

Theorem In a Pasch geometry $\operatorname{int}(\triangle A B C)$ is convex.
12. Prove the above theorem.
13. In a Pasch geometry, given $\triangle A B C$ and points D, E, F such that $B-C-D, A-E-C$ and $B-E-F$, prove that $F \in \operatorname{int}(\measuredangle A C D)$.
14. In a Pasch geometry, if $\overline{C P} \cap \overleftrightarrow{A B}=\emptyset$, prove that either $\overrightarrow{B C}=\overrightarrow{B P}$, or $P \in \operatorname{int}(\measuredangle A B C)$, or $C \in \operatorname{int}(\measuredangle A B P)$.
15. Prove that in a Pasch geometry, $\operatorname{int}(\measuredangle A B C)$ is convex.

